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21.1 Introduction

Recent development in the field of computer hardware, software, and algorithms eases
the drug design and development effort. The drug discovery process is extremely compli-
cated and necessitates an interdisciplinary effort to produce effective and commercially
sustainable therapeutics. The time and expenditure of drug development can be consider-
ably reduced using computational methods. Bioinformatics can assist in uncovering the
pathophysiological functions of drug-able genes from a large amount of genomic data in
general (Bakheet & Doig, 2009; Yamanishi et al., 2008) and hence offer possible target pro-
teins for drug screening and design. Protein structure prediction methods can assist in elu-
cidating the protein structures with high precision (Moult et al., 2018). Biomolecular
simulations with multidisciplinary approaches can provide structural and thermodynamic
capabilities of target proteins (Ayton et al., 2007) which might be beneficial for figuring
out drug binding sites and elucidating drug action mechanisms.
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Random screening of natural compounds or laboratory-synthesized compounds is one
of the traditional drug design strategies. The disadvantages of this strategy are the lengthy
design cycle and high expense. A few critical questions must be addressed in this context,
such as “which areas of the chemical environment should be examined to uncover possi-
ble therapeutic candidates. Searching on the traditional, drug-like medicinally relevant
chemical space has not led to the identification of many new chemical entities.”

Although many computational strategies are being utilized in therapeutics design how-
ever numerous demanding situations have additionally been seen. Identification and con-
firming molecular targets with therapeutic applicability is a critical step in drug
development. One of the most critical issues is determining the physiologically relevant
chemical space. Further, it is also of significant importance to study polypharmacology
and try to predict the interactions of a drug candidate with all its putative target partners.
Computer-aided drug design (CADD) methods face challenges such as improving multi-
target drug design and multitarget property prediction, identifying better ways to address
protein�protein interactions, and continuing to explore molecular targets associated with
neglected diseases. Computational approaches can also aid in the discovery of druggable
binding pockets, allosteric sites, and transient binding sites that can be used in drug
development.

21.2 Therapeutic designing using computational approaches

21.2.1 Drug discovery using computational approaches

CADD contributes to the generation of clinically useful molecules. Such methods are
generally categorized into two types, that is, structure-based and ligand-based methods
(Fig. 21.1). Today, in the fast-moving world with technological advancement, CADD has
become an inevitable, highly effective, and cost-effective approach. CADD is one of the
crucial approaches that have paved a way for the development of new therapeutic drugs.
Though several steps have been taken care of in CADD, the relevance of high-throughput
screening (HTS) has found a vital position in finding new therapeutic applications.

The main advantage of this method is that the compounds that are considered inactive
are overlooked while those considered as the most active are given prominence. Such
methods serve as a robust tool for identifying the drug target (Drie, 2007).

This technique is useful in getting minimal information on the design of compounds
due to which screenings of large libraries have become more feasible. Though the HTS
used traditionally lead to developing several hit compounds, out of which some com-
pounds could be modified to develop into a better drug healer. This leads to a low hit rate
for HTS compounds, which limits its use in research programs so that the large compound
libraries can be screened easily (Macalino et al., 2015). Presently, it has been observed that
the enormous databases of the compounds are easily and commercially accessible, and
investigating the ligand chemical space gives the scientists control a huge amount of data.
Many novel techniques established on the already available information on the biotic sys-
tem under investigation helps in modifying, manipulating, and controlling the data
(Sliwoski et al., 2013).
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Apart from these applications, the inclusion of “-omics” technologies and databases
may also help in identifying the new drug targets and the development of network-related
targeted drugs. Structure and ligand-based processes are more commonly used techniques
in the discovery of the drug, but new approaches such as proteo-chemometrics modeling
are also upcoming tools.
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FIGURE 21.1 Illustration of methodology in computer-aided drug discovery.
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CADD is a cost-effective approach, which requires less preparation time. It has the
ability to accelerate the hit rate of new evolved drug compounds as it applies the most
targeted search rather than traditional HTS. Based on the information of the structure,
either a structure-based approach or a ligand-based approach is used. After the virtual
screening, multiple lead compounds are identified, which is followed by lead optimization
(Fig. 21.1) resulting in the development of new drugs (Sliwoski et al., 2013).

21.2.1.1 Classification of computer-aided drug design

21.2.1.1.1 Structure-based methods

Structure-based methods basically analyze the three-dimensional structure of proteins
to target those relevant areas from the perspective of biological nature. The details from
the structure-based methods can be used to develop essential drugs such as antibiotics
that can engage with the target interactions, thus blocking the metabolic pathways neces-
sary for the survival of microorganisms. It actually seeks the information related to the
structure of the target protein so that the interlinkage of all the compounds can be tested
and is generally prioritized where the hierarchical data with high resolution of the target
protein such as soluble proteins are easily accessible, and which can be crystallized.
Structure-based CADD basically designs those compounds that bind firmly with the
target, like reducing free energy, improving properties of DMPK/ADMET, and becoming
target specific (Jorgensen, 2010). It mainly focuses on ligand docking, pharmacophore, and
ligand design methods.

In CADD methods, de novo drug design is considered to be an important tool that is
better known for designing and developing new compounds (Basak, 2012). Thus, it is
significant to put in computational tools to enfold the chemical space mitigating the num-
ber of compounds that need to be examined in the in vitro testing methods. The reason-
able price of CADD in comparison to chemical synthesis and characterization of
compounds results in more focused and attractive methods which explore the chemical
space (Enyedy & Egan, 2008; Sawyer et al., 2003).

21.2.1.1.2 Ligand-based computer-aided drug design

Ligand-based CADD is usually used when either no or limited information regarding
the known active and inactive molecules is available. Generally, it uses the information of
the studied and investigated active and inactive molecules by looking into their chemical
similarity or establishing the quantitative structure�activity relation (QSAR) models
(Kalyaanamoorthy & Chen, 2011). A combined application of both structure and ligand-
based methods helps in developing a compound that can be tested and authenticated both
in vitro and in vivo, confirming the location of its binding sites. When the structural infor-
mation of the target is not known, then QSAR techniques can be employed for de novo
drug design techniques. Instead of structure-based CADD methods like docking, descrip-
tor along with model generation is conducted, which is used to score the de novo-
generated molecules. The compound generation process has iterative algorithms where
modifications and alterations are conducted continuously in the structures, and their phys-
iological and biological actions are assessed through QSAR models. In comparison to the
structure-based de novo design, ligand-based de novo drug design is not performed
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always on a continuous basis due to the challenges faced while assessing a novel molecule
without the receptor structure.

21.2.1.2 Evolution of artificial intelligence and machine learning

21.2.1.2.1 Artificial intelligence

Artificial intelligence (AI) is a vast range of scientific disciplines which is supposed to
innovate new systems aiming at displaying properties of intelligence.

21.2.1.2.2 Machine learning

It is a subsystem of AI which goes for analyzing data that works automatically in build-
ing the analytical model. It is a part of AI where the systems use data, specify patterns
and take decisions with nominal human intercession. This method significantly applies
the data of statistical analysis with the help of computers. Machine learning (ML) employs
a significant range of statistical methods which are widely used in medicines.

21.2.1.2.3 Deep learning

Deep learning (DL) methods help in feeding a substantial amount of raw data in the
machine to come up with the representations required for identification or categorization.
DL methods depend mainly on varied layers of data representation with repeated altera-
tions in a sequential manner which boost up the input features necessary for making dif-
ferences and which put down the immaterial variations. DL could be guided or unguided.
DL methods are known better for the latest fundamental approaches in ML.

21.2.1.2.4 Supervised learning

In supervised learning, computer programs are trained in such a manner that when the
input data is fed into the machine, the output is generated. It is one of the most appreci-
able forms of ML with various instances in the healthcare industry.

21.2.1.2.5 Unsupervised learning

Unsupervised learning is a kind of ML in which AI algorithms are applied where it
analyzes and clusters unlabeled datasets. Specifically, it is applied for data clustering, data
association, and dimensional curtailment. It recognizes the unseen and concealed patterns
within the datasets alone on its own ability without the help of human arbitration.

21.2.1.2.6 Reinforcement learning

It is one of the most important aspects of ML apart from supervised learning and unsu-
pervised learning. Reinforcement learning (RL) algorithms have gained a prominent posi-
tion in medicinal and therapeutic applications. In comparison to other techniques of AI, it
has many advantages in the context of medicinal applications like improving novel meth-
ods for the benefit of patients which can lead to long-term benefits instead of immediate
benefits. RL uses a combined form of both supervised and unsupervised learning, where
functions of both supervised and unsupervised learning can be used for varied sets of
data (Botvinick et al., 2019; Sutton & Barto, 1998).
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21.2.1.3 Combating diseases with computational strategies

CADD tools have paved the way in innovating novel drugs have accelerated the pro-
cess of developing new drugs and cost-effectively conducting the research and develop-
ment. Due to the advanced technology in chem-informatics, bioinformatics, proteomics,
genomics, and structural information, considerable progress has been made in identifying
proteins as drug targets. At all phases of the designing and development of novel drugs,
including target identification and authentication; lead discovery and optimization, phar-
macokinetics, and toxicity profile prediction, computational approaches play a very signif-
icant role. All the mentioned stages need a great inclusion of computational methods.

The CADD tools are highly effective in the healthcare industry (Doman et al., 2002).
CADD methods had been used earlier for the development of unique molecules; that have
successfully shown their therapeutic potential conducted in the clinical trials effectively in
treating various disorders. Some of the best illustrations of the applications of CADD tools
in the innovation of approved drugs are captopril, the angiotensin-converting enzyme
(ACE) inhibitor used in the treatment and prevention of cardiovascular diseases, was
approved in 1981 (Talele et al., 2010); dorzolamide, the carbonic anhydrase inhibitor used
in treating glaucoma was approved in 1995 (Vijayakrishnan, 2009). Similarly, three com-
pounds as medications, namely saquinavir (approved in 1995), ritonavir, and indinavir
(both approved in 1996) were given approval for the treatment of human immunodefi-
ciency virus in compliance with the safety regulations (Drie, 2007).

21.2.1.4 Machine learning methods accelerate drug development

ML models have been used in several promising technologies. For example, modern
speech recognition, deep learning (DL)-assisted self-driving cars, etc. The emergence of
these computer-based computational approaches embarked in the 1950s has already
shown its efficacy in the area of bioinformatics, drug discovery, chem-informatics, etc.
(Afouras et al., 2018; Deng & Li, 2013; Fayyad et al., 2020; Joachims & Radlinski, 2007).

ML computational algorithms are used extensively in drug discovery such as “Random
Forest (RF), Naive Bayesian (NB), and support vector machine (SVM), forecasting
drug�protein interactions, exploring the effectiveness of the drug,” ensuring biomarker
safety improving the activity of bioactive components (Khamis et al., 2015; Leelananda &
Lindert, 2016; Maia et al., 2020; Réda et al., 2020; Usha et al., 2017). For the design and
construction of novel drug targets and innovation of new drugs, combined methods of
both ML and DL algorithms increase the ability, strength, effectiveness, and standard of
the evolved products. The production and establishment of huge data have increased the
efficacy and dependability of both ML and DL integrated methods by way of HTS and
computational analysis of databases in drug (Fig. 21.1) development. With the extraordi-
nary development in data assemblage and DL methods, AI and ML techniques have
shown a key role in medicinal and therapeutic applications.

In the case of orthopedics, the huge amount of data with the inclusion of ML has helped
orthopedic surgeons in many aspects of orthopedic-related applications to evaluate the
current and latest advances in this field to assess its impact on the musculoskeletal system
of humans beings. Also, it is assessed as the value-based healthcare in treating and serving
the patients in a better manner.
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21.3 Design of nucleic acid-based therapeutics and related issues

Conventional therapeutic heavily rely on targeting a protein instead of the underlying
cause. They often tend to bind with nontarget proteins while binding with the target pro-
tein and are known for generating transient therapeutic effects. The inefficiency and lack
of specificity of these conventional therapeutic led to the development of nucleic acid-
based therapeutics. Nucleic acid-based therapeutics work by targeting the mRNA encod-
ing for the target protein, instead of the protein product itself. The basic principle behind
this therapeutic is the synthesis of complementary sequences that are responsible for
recognizing single-stranded nucleotide sequences and then binding with them through
complementary bases and thus interrupting their function (Zhang & Salaita, 2021). This
principle, along with its variations is widely prominent in different types of nucleic acid
inhibitors such as antisense oligonucleotides, RNAi, ribozymes, aptamers, etc. The key
discoveries and evolution of nucleic acid-based therapeutics have been identified
(Kulkarni et al., 2021).

21.3.1 Antisense oligonucleotides

Antisense oligonucleotides consist of 15�20 nucleotides (approximately), and they were
recognized as a successful viral inhibitor by Zamecnik and Stephenson. This technology
follows two mechanisms. The first mechanism involves cleaving of the RNA moiety of
DNA by activating RNAase, leading to degradation of the target. The second mechanism
involves inhibition of the translation process instead of inducing RNAase H cleavage. The
inhibition is carried out by interrupting the binding of either the polymerase or the ribo-
some to the 50-end of Fig. 21.2 specific sequence, which in turn prevents the assembly of
the target machinery. Fig. 21.2 indicates the steps required in the generation of antisense
oligonucleotides as a potential therapeutic.

21.3.2 RNA interference

RNA interference (RNAi) utilizes a specific sequence of double-stranded RNA
(dsRNA) to knock down the expression level of target genes. This dsRNA molecule
(short hairpin RNA, shRNA) is complementary to the target mRNA. The mechanism of
this technology involves the uptake of dsRNA by the cells followed by its cleavage into
segments (B 21�22 nucleotides in length) which is commonly known as short interfer-
ing RNA (siRNA). After base-pairing the complex of siRNA and target mRNA is formed,
which binds to the multiprotein complex known as RNA induced silencing complex
(RISC). The RISC contains the Argonaute-2 (splicing proteins), which help in the cleaving
of the target mRNA molecules at specific positions (between bases 10 and 11 relatives to
50 end of antisense siRNA strand) followed by its degradation by cellular RNase
(Fig. 21.3). This further leads to efficient and specific knockdown of the specific
gene expression (Fig. 21.3) (Silva & Jemc, 2015).
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21.3.3 Ribozymes

Ribozymes were first discovered in Tetrahymena thermophila (algae). They are nucleic
acid enzymes that focus on targeting (cleaving) substrate mRNA in a highly sequence-
specific manner leading to selective inhibition of the expression of deleterious genes. Their
mechanism involves binding of ribozyme or Deoxyribozyme specifically to their intracellu-
lar substrate mRNA strand in a specific pattern and then cleaving it, thus hindering the
translation. This enzyme is further released after cleavage so that it can destroy another
mRNA molecule. This, in turn, leads to a highly specific knockdown of the encoded
protein.

21.3.4 Aptamers

Aptamers were first described in HIV-1 in 1980. They comprise of short, single-
stranded oligonucleotides (RNA or DNA) that recognize their targets based on shape com-
plementarity. Aptamers bind to the target in a highly specific manner, and their affinity
for the target is the same as that of monoclonal antibodies. The mechanism of aptamers
requires for them to bind with target proteins present on the surface and outside of the
cell (directly) to alter their function, unlike the oligonucleotide therapeutics that destroy
the mRNA so that it can target the translational machinery of the cell. The high-affinity
binding and specificity along with negligible immunogenicity (nucleic acid are not

FIGURE 21.2 Steps required
in the generation of antisense oli-
gonucleotides as a potential
therapeutic.
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recognized as a foreign particle by the immune system; hence no immunogenic response
is triggered) and versatility (they can be used for proteins, carbohydrates, nucleic acids,
small molecules, whole cells and even organisms due to their dependency of a shape
complementary for interaction) have made aptamers more effective.

21.3.5 Related issues

1. In biological systems, one protein influences the function of more than one protein
which serves as a requirement in different pathways. The oligonucleotides block the
protein synthesis, which in turn has more adverse effects (Hammond et al., 2021).
This issue can be solved by using aptamer technology which focuses on blocking a
single domain of protein without degrading its structure.

2. The delivery of oligonucleotides into cells is influenced by a certain biological barrier
such as a vascular endothelial wall. They also get degraded by nucleases that are
present in serum and tissues (Bhandari et al., 2014). Apart from this, the phagocytes
present in the reticuloendothelial system engulf these oligonucleotides. The slow
diffusion through and binding in the extracellular matrix and inefficient release from
the endosome has still been an area of concern (Zhou et al., 2020).

FIGURE 21.3 Mechanism of RNA interfer-
ence technology.
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3. The RNAi generates TLR-mediated inflammation (during the treatment of Age-related
Macular Degeneration and Diabetic Macular Edema) and has also been proved
insufficient during in vivo drug efficacy. This raises a serious concern about the
efficiency and specificity of delivery, stability, minimization of immune stimulation,
and the prolonged duration of the drug. Several chemical modifications need to be
employed to minimize the inflammation and the use of natural and synthetic carriers to
ensure efficient and tissue-specific delivery.

4. The clinical translation of GalNAc2 siRNA conjugate requires an appropriate
diagnostic biomarker other than liver biopsies. To overcome this, developing a
biomarker-based on mRNA concentration in serum and urine can be beneficial as it can
easily provide a pharmacodynamic biomarker that can be used to monitor therapeutic
endpoint without the involvement of invasive procedures (Kulkarni et al., 2021).

5. The use of vectors leads to immunotoxicity and genotoxicity. This can be improved by
using adeno associated virus (AAV) vectors as they require a helper virus for their
replication (this makes them nonpathogenic), and their genomic integration occurs at
low frequency (this reduces genotoxicity).

6. AAV vectors have low packaging capacity (less than 5 kb), so they can only be used in
case of diseases whose transgene can be packed in a single vector. Apart from that, they
are naturally found in multiple species. Due to this, the neutralizing antibodies present
in humans reduce the AAV-mediated gene therapy in case of intravenous
administration.

21.4 Computational therapeutic design and Coronavirus disease-2019

The pandemic that occurred due to the novel COVID-19 has created the worst scenario
all over the world. To address these issues, there is an urgent need to explore effective
treatment options against this COVID-19. Computational techniques have played a signifi-
cant role in the exploration of compounds and drug targets in severe acute respiratory
syndrome-Coronavirus-2 (SARC-CoV-2). Ligand-receptor binding modeling has played a
greater role in carrying out the screening of FDA-approved drugs against three SARS-
CoV-2 proteins namely main protease (Mpro), papain-like protease (PLpro), and RNA-
dependent RNA polymerase (RdRp). Computational studies have detected some novel
ligands in inhibiting SARS-CoV-2, such as antiemetics, rolapitant, and ondansetron for
Mpro. Molecular docking studies are highly effective in the identification of compounds
for the treatment of COVID-19. Some of the antiviral agents have been highly effective
against various viral diseases such as Hepatitis, HIV, Influenza, Herpes, Cytomegalovirus,
Small Pox, and the Ebola virus. Molecular dynamics simulation has shown the stability
and firmness of the ligand-protein complexes. SARS-CoV-2 inhibitors were identified by a
computational molecular docking approach and virtual screening. Remdesivir, an FDA-
approved SARS-CoV-2 drug has exhibited effectiveness in targeting both RdRp and Mpro
with low binding energies. Ondansetron, the most potent Mpro inhibitors, have slightly
higher binding energy in comparison to remdesivir/Mpro (Nguyen et al., 2020; Rochwerg
et al., 2020; Yin et al., 2020).
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In silico drugs, the repurposing technique has gained popularity as a precise computa-
tional tool for achieving quick and trustworthy outcomes. Drug repurposing is a new
technology that allows an approved or investigational drug to be used for a disease other
than the one for which it was developed. Drug repurposing is a less expensive and faster
technique because commercialized drugs have already passed clinical trials and safety
checks. Although regulatory and phase III expenses for a repurposed drug may be similar
to those for a new drug in the same indication, there may be significant savings in preclin-
ical and phase I and II costs.

The study looked at a drug repurposing technique that screened FDA-approved drugs
against viral entry receptors (ACE2 and CD147) and integral enzymes of the viral poly-
merase (RdRp). The suppression of CD147 and ACE2 can stop the virus from infecting the
host cells. Furthermore, inhibiting RdRp, the key enzyme involved in viral replication, is
useful in combating the virus (Mahdian et al., 2021).

The study investigated a drug repurposing strategy aiming to screen compatible inhibi-
tors of FDA-approved drugs against viral entry receptors (ACE2 and CD147) and integral
enzymes of the viral polymerase (RdRp). The inhibition of CD147 and ACE2 can prevent
the entering of the virus into the host cells. Besides, the inhibition of RdRp, as the main
enzyme for viral replication, is effective in fighting the COVID-19 (Mahdian et al., 2021). It
has been identified five drugs with ACE2, four drugs with RdRp, and seven drugs with
CD147 achieved the most favorable free binding energy

The study investigated a drug repurposing strategy aiming to screen compatible inhibi-
tors of FDA-approved drugs against viral entry receptors (ACE2 and CD147) and integral
enzymes of the viral polymerase (RdRp). The inhibition of CD147 and ACE2 can prevent
the entering of the virus into the host cells. It has been identified that five drugs with
ACE2, four drugs with RdRp, and seven drugs with CD147 achieved the most favorable
free binding energy (Mahdian et al., 2021).

21.5 Present and future challenges in the design of therapeutic strategies

The cutting edge in recognition of speech, visual object, and detection of an object is
currently being explored in the biomedical and genomic area has dramatically improved
by DL-based approaches.

Network-based tools have been widely used in computational biology for discovering
specific targets and interactions of the new drug molecules (Schadt, 2009). In these models,
nodes in the networks are used to represent drug, disease, or gene products, the edges are
used to represent the interactions or relationships between them. These networks are
either knowledge-based or pharmaceuticals computationally construed utilizing numerous
data resources and have multiple representations. These include drug�drug, drug�target,
drug�disease, disease�disease, disease�gene, disease�drug, protein�protein interac-
tions, and transcriptional networks. Cheng and Liu enumerated likenesses—drug-related,
target-related, and network-related to identify drug�target interaction in a bi-partite net-
work and reported this technique executed best with a normal ROC AUC of 0.96 (Chen
et al., 2015). Analogous homogenous or bi-partite network models have been included
using phenotype data such as side-effect (Campillos et al., 2008; Mizutani et al., 2012;
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Ye et al., 2014), transcriptional (Brown et al., 2016; Chang et al., 2011; Setoain et al., 2015),
drug�disease (Chen et al., 2015; Wu et al., 2013), and signaling pathway data (Jadamba &
Shin, 2016).

Integrating heterogeneous data provides a ton of information and can possibly divulge
hidden or unknown drug�disease relationships based on the guilt-by-association rule. A
large portion of similitude-based approaches could be drug-based or disease-based
networks, with relatively few methods that fabricated a drug�disease heterogeneous
network using compendia of gene notations and network clustering to predict drug repo-
sitioning candidates (Wu et al., 2013; Zhao & So, 2017).

Interestingly, to predict psychiatric drug indications based on the expression profiles of
drugs deep neural networks (DNNs) approach was compared with the SVM-based
approach and reported by Zhao et al. (2017). While more studies are needed to understand
if DNN-based approaches indeed have the claimed benefits, there have been previous
literature suggested that DL-based methods execute better than traditional ML algorithms
in toxicity identification by allowing multitask learning (Himmelstein et al., 2017; Luo
et al., 2017a, 2017b).

Luo et al. (2017a, 2017b) built an identical network-related framework using heteroge-
neous data through a network diffusion method and used the diffusion distributions to
acquire the identification scores of drug�target relationships (Ashburn & Thor, 2004).
Recently, Himmelstein et al. included data from 29 public resources to predict drug reposi-
tioning candidates and identify the possibility of repositioning for 209,168 drug�disease
pairs (Himmelstein et al., 2017).

CADD still faces various difficulties, which comprises, but are not limited to: (1)
expanding the efficiency of virtual screening; (2) enlarging the number and quality of
online computational resources; (3) further developing the field of computational chemo-
genomics; (4) strengthening the design of drugs aimed at numerous molecular targets; (5)
improving the predictive capacity of toxicity models and side effects, and (6) strengthen-
ing the interaction with other disciplines to optimize the search for bioactive compounds
for the treatment and/or prevention of diseases.

The missing drug�disease indication data is a major principal issue. The predictive
power of the computational biology for drug repurposing candidate discovery can poten-
tially compromise the missing indications as true negatives or ignore them from training.
The lack of a truly high standard dataset for drug repositioning makes it challenging for
in silico approaches to evaluate results. As a result, to assess the utility of computational
drug repurposing algorithms, common performance metrics such as sensitivity, specificity,
and precision are used. Lastly, existing computational approaches tend to be predomi-
nantly/potent one-sided (e.g., drug-centric or disease-centric).

Growing scientific evidence suggests that a bioactive compound found to be safe and
effective in humans is likely to have various therapeutic uses. Given that this “simple”
approach for repositioning is filling in prevalence, there is a dire requirement for more
proficient and orderly computational ways to deal with and first organize the accessible
genomic and pharmacological information bases for portrayal and information revelation
and afterward utilize these datasets and example disclosure instruments to predict the
possible new uses for pre-existing medications. What is required; obviously is a change in
outlook in the methodologies of genomic, bio pharmacological, and computational-based
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approaches for a more educated efficient medication rediscovery (“orderly good fortune”)
keeping in mind the entirety of the information assets.

Given the increasing number of cancer patients, environmental and ecosystem safety
must be included in the list of topmost issues for finding effective anticancer therapeutics.
While finding effective treatments for so far incurable diseases remains a key goal, preven-
tion, including a healthy diet, reduced stress, and exercise (Chang et al., 2018;
Purushotham et al., 2018) from early childhood should be of top importance.
Representative and predictive phenotypes should be identified, taking into consideration
not only the cancer cells as selected genetic entities of a particular patient but also their
evolving epigenetic status and influence of tumor microenvironment, the immune system,
the microbiota, and hormonal and neural systems. A major challenge is thus not only to
speed up the repurposing of known drugs but to develop personalized phenotypic
validation schemes.

Despite the reported successes of artificial intelligence within cancer imaging, several
limitations and hurdles must be overcome before widespread clinical adoption. With the
constant increase in demand for CT and MRI, care providers are constantly generating
large amounts of data.

Data-hungry methods, including DNNs, aggravate these issues. The research commu-
nity has yet to reach a consensus on specific datasets that can be utilized for comparing
and contrasting efforts in terms of performance, generalizability, and reproducibility,
although the volume of medical data is being made public is an encouraging move for-
ward (Barrett et al., 2015). Furthermore, access to available datasets should be improved to
promote intellectual collaboration with government groups, professionals, and institutes.
It should be encouraged to share validated data to support the development of AI algo-
rithms, which requires overcoming certain fundamental technical, legal, and perhaps ethi-
cal concerns (Char et al., 2018).

Another limitation includes the interpretability of AI and the ability to interrogate such
methods for reasons behind a specific outcome, as well as the anticipation of failures.
Although the present state of research has focused on performance gains over clarifying
ability and transparency, the interpretability of AI is an active and functioning area of
research. Algorithms can be unethical by design (Wu et al., 2017) and might worsen the
already existing tension between providing care and turning profits. What’s more, a
defend against “learned defenselessness” should be utilized as a way to check high depen-
dence on robotization and a definitive relinquishment of the presence of mind. Finally,
automated systems also might challenge the dynamics of responsibility within the doctor-
patient relationship, as well as the expectation of confidentiality (Wu et al., 2016).

It is likely that AI application software will need to meet meticulous testing that is
a decree for new submissions for regulatory approval, including quality control and risk
assessment.

Although AI can detect incidental findings which is clinically not relevant, these find-
ings also may be clinically impertinent and, if not carefully framed in the right clinical
context, may increase patient stress, healthcare costs, and undesired side effects from
treatment.

Although several recently proposed network-based methods can be used to discover
potential drug�target interaction for both approved drugs and new chemical entities
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(Cheng, Liu, et al., 2012; Cheng, Zhou, et al., 2012), they cannot predict potential DTIs for
those targets without known ligands. Second, network-based methods are still not quanti-
tative. They only give a predictive score for each potential DTI, where a higher score
means a higher probability of occurrence. The binding affinities of the predicted DTIs are
unknown. Moreover, the interaction type is not considered yet.

Given the highly complicated and regulated nature of drug development, a long-term
vision is required when developing AI applications in drug repurposing that could increase
efficiency and effectiveness in the various processes involved and decrease the barriers
between many research components in the ecosystem to create new therapy options. Drug
discovery is a tedious process that included multilevel interactions between the biological
system and chemical compounds. Therefore, a newer way of building an effective and
interpretable model of drug identification is to enrich the biologically inspired visible neural
network model with drug-related entities such as chemical compounds and diseases. The
model parameters can be optimized in an end-to-end way as in other DL models.

21.6 Conclusion

The drug discovery and development process are long and requires a lot of money. The
development of computational methods makes easier the exploration of drugs. Computer-
aided drug design, nucleic acid-based therapeutics, and the use of AI are being contrib-
uted a lot in the prediction of potential compounds/drugs against life-threatening diseases
including COVID-19. But simultaneously some challenges have been associated with
them. The complicated and regulated nature of drug development needs a long-term
vision when developing AI applications in drug repurposing that could increase effi-
ciency. We have to address the issues related to therapeutics; it would be helpful in thera-
peutics against life-threatening diseases like COVID-19.
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